

Q1. An ideal gas obeying kinetic theory equation can be liquefied if :

- (1) Its temperature is more than critical temperature
- (2) Its pressure is more than critical pressure
- (3) Its pressure is more than critical pressure but temperature is less than critical temperature
- (4) It cannot be liquefied at any value of Pressure and Temperature.

Q2. A quantity of gas is collected in a graduated tube over the mercury. The volume of gas at 18°C is 50 ml and the level of mercury in the tube is 100 mm above the outside mercury level. The barometer reads 750 Torr. Hence the volume of gas at STP is approximately is :

- (1) 22 ml
- (2) 40 ml
- (3) 20 ml
- (4) 44 ml

Q3. Ti^{+2} is purple while Ti^{4+} is colorless ,because :

- (1) There is no crystal field effect in Ti⁴⁺
- (2) Ti⁺² has 3d² configuration
- (3) Ti^{4+} has $3d^2$ configuration
- (4) Ti⁴⁺ is a very small cation when compared to Ti²⁺ and hence, does not absorb any radiation

Q4. Aluminium phosphate is 100% ionised in a 0.01 molal aqueous solutions. Hence $\frac{\Delta T}{K_{h}}$ is :

- (1) 0.01
- (2) 0.015
- (3) 0.0175
- (4) 0.02

Q5. Which of the following azeotropic solutions has the boiling point less than boiling point of the constituent liquids A and B?

- (1) CHCl₃ and CH₃COCH₃
- (2) CS_2 and CH_3COCH_3

(3). CH₃CH₂OH and CH₃COCH₃

(4). CH_3CHO and CS_2

Q6. Under the same reaction conditions, initial concentration of 1.386 mol dm⁻³ of a substance becomes half in 40 second and 20 second through first order and zero order kinetics, respectively. Ratio k_1/k_0 of the rate constants for first order (k_1) and zero order (k_0) of the reaction is :

- (1) 0.5 mol⁻ dm³
- (2) 1 mol⁻ dm³
- (3) 1.5 mol⁻ dm³
- (4) 2 mol⁻ dm³

Q7. Naphthalene ,a white solid used to make mothballs ,has a vapour pressure of 0.1 mm of Hg at 27° C . Hence K_P and K_C for the equilibrium are

$$C_{10}H_8(s) = C_{10}H_8(g)$$

- (1) .1 and .1
- (2) .1 and .0041
- (3) .000132 and .00000534
- (4) .00000536 and .000132

Q8. Two different hexoses were found to give the same osazone .Which one of the following statements is correct with respect to their structural relationship ?

- (1) The carbon atoms 1 and 2 in both have the same configuration
- (2) The carbon atoms 3 and 4 and 5 have same configuration
- (3) Both of them must be aldoses
- (4) They are epimeric at C-3

Q9. Kiliani Fischer synthesis converts an aldopentose to a :

(1) Mixture of aldohexoses and ketohexose

enicaloeek	
(2). Mixture of aldohexoses differing in	
configuration of C ₆	
	Q15. Which of the following reaction does
(3). Mixture of aldohexoses differing in	not involve electrophilic substitution ?
configuration of C ₂	(1) Rosenmund
(4). Single aldohexose.	(2) Riemer and Tiemann
	(3) Friedel crafts
Q10. Which amino acid can form covalent	(4) Gattermann –koch
sulphur –sulphur bonds ?	
	Q16 Which of the following allotropes of
(1) cysteine	Phosphorus is thermodynamically most stable ?
(2) glycine	
(3) proline	(1) Red
(4) methionive	(2) White
Odd. Native silves restal former a vester calvela	(3) Black (4) Yellow
Q11. Native silver metal forms a water soluble	(4) Yellow
complex with a dilute aqueous solution of NaCN in	Q17. Which silicate is formed from $[SiO_4]^{4-}$,
the presence of :	tetrahedral units by sharing 3 oxygen atoms?
(1) nitrogen	
(2) oxygen	(1) Sheet silicates
(3) carbon dioxide	(2) Pyro silicates
(4) argon	(3) Linear chain silicates
	(4) 3 dimensional silicates
Q12. Detection of elements in organic	
compounds is done using sodium fusion method	Q18. The temperature of 4 moles of an
which is called :	ideal gas is raised from 300 K to 350 K. What is
	the value of $\Delta H - \Delta E$ for this process ?
(1) Middleton's fusion method	The value of $\Delta H = \Delta E$ for this process !
(2) Lassaigne fusion method	(1) 0
(3) Hofmann's fusion method	(2) 415 J
(4) Hinsberg's method	(3) 41.5 J
Q13. The substance which can act both as an	(4) 1660 J
analgesic and as a antipyretic is :	
(1) quinine	
(2) aspirin	
(3) penicillin	
(4) insulin	
(+) IIISUIII	
Q14. A hybrid propellant uses :	
(1) a solid fuel and a liquid oxidiser	
(2) a composite solid propellant	H ₃ CNOCI
(3) a biliquid propellant	\sim
(4) a monoliquid propellant	
	H ₃ C

Q19. If ΔH_f^0 $(H_2 O)$ is -286.2 kJ , then ΔH_f^0 (OH^-) is :	$H_3C \longrightarrow CH_3 CH_3$
 (1) -228.9 k cal (2) +228.9 kcal (3) -343.5 kcal (4) +343.5 kcal 	(1) Cl
Q20. When a certain conductivity cell was filled with 0.01 M solution of KCl ,it had a resistance of 160 ohm at 25°C , and when filled with 0.005 M NaOH ,it had a resistance of 190 ohm . If the specific resistance of KCl solution is 700 ohm-cm , the specific conductance of NaOH solution is	(2) CH_3 CH_3 CH_3 CH_3
 (1) .00120 (2) .00170 (3) .00180 (4) .00190 	(3) Both (1) and (2) (4) None of these
Q21. An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon . the ester formed will be ?	Q25.For the cell $Zn(s) Zn^{2+}(aq)(1M) Cu^{2+}(aq)(1M) Cu(s),$ E_{cell}^{0} is 1.10 V, $E_{Cu^{2+}/Cu}^{0} = 0.34V$ and for
 (1) optically active mixture (2) pure enantiomer (3) meso compound (4) racemic mixture 	the cell Cu $Cu^{2+}(1M)$ $Ag^{+}(1M)$ Ag , $E_{cell}^{0} = 0.46 V$ hence , E_{cell}^{0} of the cell $Zn Zn^{2+}(1M) Ag^{1+}(1M) Ag$ is :
Q22. Hydration of an alkyne : (1) takes place through carbocation	(1) $-0.04 V$ (2) $+0.04 V$ (3) $+0.03 V$ (4) $+1.55 V$
 (2) Is a reversible reaction (3) Follows S_N¹ mechanism (4) Follows all of the above reaction. 	 (4) +1.56 V Q26. Electro-osmosis is observed when : (1) diagonation modified begins to some in
Q23 When MnO ₂ is fused with KOH , a colored compound is formed. The product and its colour are :	 (1) dispersion medium begins to move in an electric field (2) dispersed phase begins to move in an electric field (2) to both (1) and (2)
 K₂MnO₄ ,Purple green KMnO₄ , Purple Mn₂O₃ , brown Mn₃O₄ ,brown 	(3) In both (1) and (2)(4) In none of the above
Q24. The product in the following reaction is	Q32. The reagent which gives a precipitate with acetaldehyde is :

(1) Sodium carbonate (2) Dilute Sodium hydroxide (3) 2,4- Ditro phenyl hydrazine (4) Bromine Q33. Identify the correct product of the Q27. A sample of CuSO₄.5H₂O contains 3.782 g of Cu following oxidation reaction : .How many grams of oxygen are in this sample (Cu = 63.5) (1) 0.952 g (2) 3.80 g (3) 4.761 g (4) 8.576 g Q28. If angular momentum quantum number can take value of n also (in addition to other possible values) then total number of electrons in first orbit (1) would have been : (1) 2 (2) 6 (3) 8 (4) 10 Q29. The nodal plane in the π bond of ethane is (2)located in : (1) The molecular plane (2) A plane parallel to the molecular plane (3) A plane parallel to the molecular plane which bisects the carbon -carbon σ bond at right angle (4) A plane perpendicular to the molecular plane which contains the carbon-carbon (3) σ bond Q30. To an acidified dichromate solution, a pinch of Na₂O₂ is added and shaken. What is observed : OН (1) Blue colour (4) (2) Red colour changing to green (3) Copious evolution of oxygen (4) Bluish green precipitate. Q31. The enolic form of acetone contains : (1) 8σ bonds, 2π – bonds and 1 – lone pair (2) 9σ bonds, 1π – bonds and 2 – lone pair (3) 9σ bonds, 2π – bonds and 1 – lone pair

