

Q1. A spherical ball of radius 7 cm contains 56	Q6. To remove the electron in a H atom from
percent iron . Its density is 1.4 g/cm ³ .the number of	the ground state to a excited state, 12.084 eV is
moles of Fe present approximately is	needed. How much energy is needed to excite 1
	mol of H atoms to undergo this transition (1eV =
(1) 10	1.6 X 10 ⁻¹⁹ J)
(2) 15	
(3) 30	(1) 728 kJ
(4) 25	(2) 984 KJ
02. If the equivalent weight of an element is 22	(3) 1036 kJ
dz. If the equivalent weight of an element is sz	(4) 1164 kJ
then the percentage of oxygen in its oxide is	07 Select the correct statement :
(1) 16	
(2) 40	(1) Radial part is dependent on r and
(3) 32	angular part is dependent on θ and φ
(4) 20	(2) Angular wave function " $\theta \phi$ " depends
	only on I and mindependent on n for a
Q3. How many moles of electrons weigh one	given type of orbital.
kilogram (mass of electron = 9.31 X 10 ⁻³¹ kg)	(3) Both are correct
(4) (022 + 1023	(4) None is correct.
(1) 6.023×10^{23}	
(2) $\frac{10}{9.108}$	Q8. The Bohr model can explain the spectrum
(3) $10^{54} \times \frac{6023}{10^{10}}$	of :
9.108 	
(4) ${(9.108 \times 6.023)}$	(1) the hydrogen atom only
	(2) An atom or ion having one electron only
Q4. When a certain metal was irradiated with light	(3) The hydrogen molecule only
of frequency $3.2 \times 10^{10} Hz$ photoelectrons	(4) The sodium atom only
emitted had twice the kinetic energy as did	09. The 'd' orbital which has maximum
photoelectrons emitted when the same metal was	probability density lying along two axes is as :
irradiated with a light of frequency $2.0 \times 10^{10} Hz$	
the threshold frequency is (h = 6.63 X 10 ⁻³⁴ J-s)	(1) $d_{x^2-y^2}$
(1) $8 \times 10^{13} H_{Z}$	(2) d_{z^2}
(2) $8 \times 10^{15} Hz$	(3) d_{xy}
(2) $8 \times 10^{14} H_Z$	(4) d_{zx}
(4) $64 \times 10^{16} Hz$	
	Q10. Which one of the following orbitals gives
Q5.If the radius of the first Bohr orbit is x ,the de-	an electron a greater probability of being found
Broglie wavelength of the electron in 3 rd orbit of H	close to the nucleus ?
atom is nearly	(1) 25
	(1) 33
(1) $2x\pi$	(2) 30
(2) $6x\pi$	(3) 50 (4) 5a
(3) 9X	(4) Jg
(4) X/3	

	(1) Only (a)
Q11. A 10 cm column of air is trapped by a column	(2) . only (b) and (c)
of Hg 4 cm long in capillary tube of uniform bore	
when the air column is held horizontally in a room	(3). Only (a) and (b)
at 1 atm . Length of the air column when the tube is	(4). Only (b) and (c)
held vertically with the open end up is :	
(1) 0.5 cm	Q16. The triple point of carbon dioxide occurs
(1) 9.5 cm	at 5.1 atm and -50° C . Its critical temperature is
(2) 10.52 cm (3) 3.53 cm	31 °C and solid carbon dioxide is more dense
(3) 3.55 cm	than liquid carbon dioxide . Under what
	conditions is liquid carbon dioxide stable at
Q12. Rate of effusion of LPG (a mixture of n –	equilibrium ?
butane and propane) is 1.25 times that of sulphur	(1) 10 atm and – 25⁰C
trioxide . Hence , mass fraction of n – butane in LPG	(2) 5.1 atm and -25° C
is :	(3) 10 atm and 33 ^o C
(1) 75	(4) 5.1 atm and -100°C
(1) .75	
(2) .23	Q17. In the particular reaction we start with 2
(4) 67	moles of nitrogen and 5 moles of hydrogen
(+) .07	,exerting a total pressure of 7 atm at a given
Q13. Ideal gas equation in terms of KE per unit	temperature in a closed vessel. At equilibrium
volume , E is p =	50% nitrogen is converted to ammonia. (Assume
(1) 207 /2	constant temperature) the partial pressure of $(z) + 2(z) + 2(z) + 2(z) + 2(z) + (z)$
(1) 3R1/2 (2) 2F/2	ammonia is : $2N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
(2) 2E/3	(1) 2.8 atm
(3) 2R1/ 3 (4) 2F/2	(2) 2 atm
(4) 31/2	(3) 3.2 atm
Q14. The compressibility factor of gas is less than	(4) 4 atm
unity at STP , therefore :	
	Q18. When a liquid is in equilibrium with its
(1) $V_m(molar volume) > 22.4 L$ (2) $V_m < 22.4 L$	vapour , thermodynamic criterion for
(2) $V_m < 22.4 L$ (2) $V_m = 22.4 L$	equilibrium is :
(3) $V_m = 22.4 L$ (4) $V = 44.8 L$	(1) Entropy of the liquid phase is greater
$(+) v_m = 11.0 D$	than entropy in the vapour phase
Q15. The pressure on a sample of water at its triple	(2) Enthalpy of the liquid phase is less than
point is reduced while the temperature is held	enthalpy in the vapour phase
constant .Which of the phase changes are favoured	(3) Chemical potential in the liquid phase is
?	equal to chemical potential in the
(a) Eusion	vapour phase
(b) Sublimation	(4) Gibbs free energy of the two phases is
(c) Vapourisation	different
	019 Identify the correct statement regarding

ChemicalGeek	
Entropy :	internal energy of the system ?
(1) At absolute zero of temperature , the	(4)
entropy of the perfectly crystalline	(1) + 230 kJ
substance is taken to be zero.	(2) -230 kJ
(2) At absolute zero of temperature the	(3) -210 kJ
entropy of a perfectly crystalline substance	(4) +210 kJ
is positive	0.24 For a particular reaction $\Lambda H^0 = -38.3 kI$
(3) At absolute zero of temperature the	$\Delta \Sigma^0 = -112 I/K$ This reaction is
entropy of all the crystalline substances is	
be zero	(1) Spontaneous at all temperatures
(4) At 0° C, the entropy of a perfectly	(2) Non – spontaneous at all temperatures
crystalline substance is taken to be zero.	(3) Spontaneous at a temperature below
	338 K
Q20. The work done during the expansion of a gas	(4) Spontaneous at a temperature above
from a volume of 4 dm ³ to 6 dm ³ against constant	338 K
external pressure of 3 atm is : (1 L atm = 101.32 J)	
	Q25. When one mole of an ideal gas expands
(1) -6 J	from 5.0 dm ³ to 25 dm ³ isothermally at 25 ^o C ,it
(2) -608J	yields 3.99 kJ of work. The process of expansion
(3) +304 J	is :
(4) -304 J	
O21 For the reaction at constant temperature of	(1) Reversible
27° C	(2) Irreversible
27 C	(3) Without change in entropy
$C = (x_1, x_2) + 5Q + (x_2) + 2QQ + (x_1) + 4UQ + (U)$	(4) Against $P_{ext} = 0$
$C_3 H_8(g) + 3O_2(g) \rightarrow 3 CO_2(g) + 4H_2O(L)$	
$\Delta H = \Delta F$ is :	
$\Delta I \Delta L$ 15.	
(1) +3RT	
(2) –RT	
(3) +RT	
(4) -3RT	
Q22. The change in entropy when one mole of an	
ideal gas is compressed to one-fourth of its initial	
volume and simultaneously heated to twice its	
initial temperature (in Kelvin scale) is :	
(1) $(C = P)$ $[n]$	
(1) $(C_V - T_V)$ III4 (2) $(C_V - 2P)$ In2	
$(2) (C_V - 2R) \ln 4$	
(5) $(C_V - 2K)$ III4	
(4) (Cv+2-R) INZ	
Q23. A certain reaction is exothermic by 220 kJ and	
does 10kJ of work. What is the change in the	